NegasiKonjungsi Pernyataan majemuk dengan konjungsi ditandai dengan adanya kata penghubung dan, tetapi, seandainya, walaupun, seperti, bahwa, walaupun, supaya. Nilai kebenaran dari konjungsi hanya akan bernilai benar (B) jika semua proposisi tunggalnya bernilai benar, selain itu nilainya salah (S). Tahukah kamu, belajar logika matematika dapat meningkatkan kemampuan menalar kita, lho. Dampak positifnya, kita mudah menarik kesimpulan yang benar dan mampu menyelesaikan masalah yang lebih kompleks. Berguna sekali untuk kehidupan sehari-hari, kan? Nah, berikut ini akan dibahas tentang beberapa macam kalimat yang digunakan dalam penalaran. Salah satunya yaitu kalimat majemuk. Kira-kira, bagaimana ya memahaminya? Simak yuk! 1. Pernyataan atau Kalimat Terbuka Pernyataan adalah kalimat yang hanya memiliki satu nilai, benar atau salah. Pernyataan tidak bisa sekaligus benar dan salah. Dalam matematika lambang pernyataan dengan huruf kecil seperti a, b, p, q, dan r. Kalimat terbuka adalah kalimat yang mengandung variabel, sehingga belum dapat ditentukan nilai kebenarannya benar atau salah. 2. Pernyataan Majemuk Pernyataan majemuk memiliki lebih dari satu pernyataan dalam satu kalimat. Di antara satu pernyataan dengan pernyataan lainnya dibutuhkan kata penghubung. Nah, kata penghubung pada pernyataan majemuk di dalam logika matematika ini ada beberapa jenis, yaitu negasi, disjungsi, konjungsi, implikasi, dan biimplikasi. Berikut penjelasan dari masing-masing kata penghubung pada pernyataan majemuk, yaitu Ingkaran atau negasi atau penyangkalan ~ atau - Ingkaran atau negasi merupakan kebalikan atau lawan dari suatu pernyataan. Jika diketahui pernyataan p, maka ingkarannya adalah ~p dan sebaliknya. Nilai kebenaran dapat dituliskan dalam bentuk tabel sebagai berikut Contoh Ingkaran dari “Saya sudah mandi” adalah … Jawab p = Saya sudah mandi kata sudah diingkar menjadi belum ~p = Saya belum mandi Konjungsi ^ Konjungsi adalah kata penghubung yang menggunakan kata “dan”, disimbolkan dengan ^. Nilai kebenaran pada konjungsi yaitu jika p dan q merupakan dua pernyataan. Maka p^q bernilai benar jika p dan q keduanya bernilai benar, sebaliknya p^q bernilai salah, jika salah satu dari p atau q bernilai salah atau keduanya bernilai salah. Lihat tabelnya ya! Contoh Nilai kebenaran dari “2 adalah bilangan prima dan 3 adalah bilangan ganjil” Jawab Pernyataan p = 2 adalah bilangan prima BENAR Pernyataan q = 3 adalah bilangan ganjil BENAR Karena p dan q bernilai BENAR, maka pernyataan p^q bernilai BENAR. Wah, mudah ya mempelajari logika matematika? Pasti kamu bisa kan? Tentunya materi ini masih akan terus berlanjut, tunggu artikel selanjutnya ya! Mau belajar dengan Master Teacher? Ada video animasi yang keren juga lho. Daftar ruangbelajar yuk! Sumber Referensi Sharma S. N, Widiastuti N, Himawan C, dkk 2017 Jelajah Matematika SMA Kelas XI Program Wajib. JakartaYudisthira Artikel diperbahui 21 Januari 2021
LatihanMateri LOGIKA MATEMATIKA 1. Tentukan negasi dari pernyataan-pernyataan berikut ini. (a) Tarif dasar listrik naik. (b) 10 = 50 5 (c) Celana Dono berwarna hitam. (d) Semua jenis ikan bertelur. (e) Beberapa astronot adalah warga Amerika. (f) Mungkin akan hujan salju hari ini. (g) Leony seorang sarjana. (h) Semua anak kehausan.
Perangkai Logika Negasi, Konjungsi, Diajungsi, Implikasi, dan Biimplikasi Ada lima jenis perangkai logika yang dapat dipakai untuk menggabungkan pernyataan-pernyataan menjadi pernyataan majemuk, yaitu negasi negation, konjungsi conjunction, disjungsi disjunction, implikasi implication, dan biimplikasi biimplication. Tabel menyajikan jenis, simbol dan bentuk dari lima perangkai logika. Tabel Prioritas dari perangkai-perangkai logika disajikan dalam Tabel Perangkai logika dengan prioritas lebih tinggi harus diselesaikan lebih dahulu. Tabel Perangkai Prioritas Negasi 5 Konjungsi 4 Disjungsi3 Implikasi2 Biimplikasi1 Untuk mereduksi jumlah tanda simbol dan bentuk digunakan perjanjian "Tanda kurung dapat dihilangkan apabila pernyataan dapat dikonstruksi dengan prioritas perangkai". Misalkan $p$ sebuah pernyataan. Negasi ingkaran dari $p$ adalah pernyataan tidak p, yang dilambangkan dengan $\neg p$. Jadi, jika $p$ bernilai benar, maka $\neg p$ bernilai salah, dan jika $p$ bernilai salah, maka $\neg p$ bernilai benar. Tabel kebenaran $\neg p$ relatif terhadap $p$ disajikan dalam Tabel Tabel $p$ $\neg p$ TF FT Contoh Tentukan negasi dari pernyataan-pernyataan berikut a $p$ $2+3>5$. b $q$ $5-2=3$. c $r$ Hari ini hujan. Penyelesaian a $\neg p$ $2+3 \le 5$. b $\neg q$ $5-2 \ne 3$. c $\neg r$ Hari ini tidak hujan. Konjungsi Misalkan $p$ dan $q$ adalah pernyataan. Konjungsi dari $p$ dan $q$ adalah pernyataan majemuk “p dan q”, yang dilambangkan dengan $p \wedge q$. Pernyataan majemuk $p \wedge q$ bernilai benar jika $p$ dan $q$ keduanya benar. Pernyataan majemuk bernilai salah jika salah satu $p$ atau $q$ salah, atau $p$ dan $q$ keduanya salah. Tabel kebenaran $p \wedge q$ disajikan dalam Tabel Tabel $p$ $q$ $p \wedge q$ T T T T F F F T F F F F Contoh Bentuklah konjungsi dari $p$ dan $q$. a $p$ $2+3>5$; $q$ $5-2=3$. b $p$ $-3>-7$; $q$ $3 \le 5$. c $p$ 2 adalah bilangan prima; $q$ $4>2$. Penyelesaian a $p \wedge q$ F b $p \wedge q$ T c $p \wedge q$ T Disjungsi Disjungsi dari pernyataan-pernyataan p dan q adalah pernyataan majemuk "p atau q", yang dilambangkan dengan $p \vee q$. Pernyataan majemuk $p \vee q$ bernilai benar jika salah satu atau kedua-duanya benar. Dalam praktek, kadang-kadang ditulis "dan/atau" dalam arti inklusif. Tabel kebenaran $p \vee q$ disajikan dalam Tabel Tabel $p$ $q$ $p \vee q$ T T T T F T F T T F F F Contoh Bentuklah disjungsi dari $p$ dan $q$. a $p$ $2+3 \ne 5$ $q$ $3>5$. b $p$ 2 adalah bilangan prima, $q$ $\sqrt{2}$ adalah bilangan rasional. Penyelesaian a $p \vee q$ F b $p \vee q$ T Implikasi Misalkan $p$ dan $q$ adalah pernyataan. Pernyataan majemuk "jika $p$, maka $q$", yang dilambangkan dengan $p \to q$ disebut pernyataan bersyarat atau implikasi. Pernyataan $p$ disebut hipotesis atau anteseden antecedent dan $q$ disebut konklusi atau konsekuen consequent. Pernyataan majemuk $p \to q$ bernilai salah jika $p$ benar dan $q$ salah. Dalam kemungkinan lainnya, $p \to q$ bernilai benar. Tabel kebenaran $p \to q$ disajikan dalam Tabel Tabel $p$ $q$ $p \to q$ T T T T F F F T T F F T Contoh Tuliskan implikasi dari $p$ dan $q$. a $p$ Saya lapar $q$ Saya akan makan b $p$ 2 adalah bilangan prima $q$ $4>2$. Penyelesaian a Jika saya lapar, maka saya akan makan. b 2 adalah bilangan prima, maka $4>2$. Dalam matematika praktek, pernyataan-pernyataan berikut merupakan bentuk yang ekuivalen, artinya jika salah satu benar maka semua yang lain juga benar dan jika salah satu salah, semua yang lain juga salah. a Jika $p$ ,maka $q$. b $p$ mengimplikasi $q$. c Jika $p$, $q$. d $p$ hanya jika $q$. e $q$ jika $p$. f $p$ adalah syarat cukup untuk $q$. g $q$ adalah syarat perlu untuk $p$. Biimplikasi Misalkan $p$ dan $q$ adalah pernyataan. Pernyataan majemuk "$p$ jika dan hanya jika $q$", yang dilambangkan dengan $p \iff q$ disebut biimplikasi. Tabel kebenaran $p \iff q$ disajikan dalam Tabel Pernyataan majemuk $p \iff q$ bernilai benar jika $p$ dan $q$ keduanya benar atau keduanya salah. Biimplikasi $p \iff q$ juga dinyatakan sebagai $p$ adalah syarat perlu dan cukup untuk $q$. Tabel $p$ $q$ $p \iff q$ T T T T F F F T F F F T Contoh Apakah biimplikasi berikut benar? $4>3$ jika dan hanya jika $4-3>0$. Penyelesaian Misalkan $p$ adalah pernyataaan $4>3$ dan $q$ adalah pernyataan $4-3>0$. Karena $p$ dan $q$ keduanya bernilai benar, maka disimpulkan bahwa $p \iff q$ bernilai benar. Negasi dari Konjungsi, Disjungsi, Implikasi, dan Biimplikasi 1. $\neg p \wedge q \equiv \neg p \vee \neg q$. 2. $\neg p \vee q \equiv \neg p \wedge \neg q$. 3. $\neg p \to q \equiv p \wedge \neg q$. 4. $\neg p \iff q \equiv$ $\neg p \to q \vee \neg q \to p$. Demikianlah postingan tentang perangkai logika. Sampai jumpa dan semoga bermanfaat.
Untukmenyusun Ingkaran (Negasi) dari suatu pernyataan dapat kita lakukan dengan menambahkan kata " Tidak ", atau " Bukan " di depan (atau ditengah) pernyataan semula. Negasi juga biasanya dilambangkan dengan " ~ " yang di tulis di depan pernyataan. Jika p suatu pernyataan yang benar maka ~p merupakan pernyataan yang bernilai salah. Negasi dari pernyataan majemuk adalah negasi dari konjungsi, disjungsi, implikasi dan biimplikasi. Seperti yang telah dijelaskan dimuka, jika p adalah suatu pernyataan, maka negasi p ditulis –p dan dibaca “tidak benar bahwa p”, sehingga 1. –p Ʌ q dibaca “tidak benar bahwa p Ʌ q” 2. –p V q dibaca “tidak benar bahwa p V q” 3. –p → q dibaca “tidak benar bahwa p → q” 4. –p ↔ q dibaca “tidak benar bahwa p ↔ q” Aturan negari dari pernyataan majemuk dapat dituliskan sebagai berikut 1. –p Ʌ q ≡ –p V –q 2. –p V q ≡ –p Ʌ –q 3. –p → q ≡ p Ʌ –q 4. –p ↔ q ≡ –p → q V –q → p –p ↔ q ≡ p Ʌ –q V q Ʌ –p Bukti untuk masing-masing negasi dari pernyataan majemuk di atas akan dijelaskan pada pembahasan tentang ekivalensi di bagia selanjutnya. Untuk lebih jelasnya pelajarilah conto soal berikut ini 09. Nyatakanlah negasi dari setiap pernyataan majemuk berikut ini a Ayah pergi ke sawah dan ibu memasak di dapur b Kakek menanam cabe dan tomat di belakang rumah c 2 atau 5 adalah faktor dari 20 d 12 habis dibagi 3 tetapi 15 tidak habis dibagi 4 Jawab a Tidak benar bahwa ayah pergi ke sawah dan ibu memasak di dapur Dengan kata lain ayah tidak pergi ke sawah atau ibu tidak memasak di dapur b Tidak benar bahwa kakek menanam cabe dan tomat di belakang rumah Dengan kata lain Kakek tidak menanam cabe atau tidak menanam tomat di belakang rumah c Tidak benar bahwa 2 atau 5 adalah faktor dari 20 Dengan kata lain 2 bukan faktor dari 20 dan 5 juga bukan faktor dari 20 d Tidak benar bahwa 12 habis dibagi 3 tetapi 15 tidak habis dibagi 4 Dengan kata lain 12 tidak habis dibagi 3 atau 15 habis dibagi 4 10. Nyatakanlah negasi dari setiap pernyataan majemuk berikut ini a Jika Andi naik kelas maka ia akan dibelikan sepeda motor b Jika x bilangan prima maka x tidak habis dibagi 5 c Andi akan tinggal di Yogyakarta jika dan hanya jika ia kuliah di UGM d x bilangan ganjil jika dan hanya jika x tidak habis dibagi 2 e Wati tidak makan pagi jika dan hanya jika ia terlambat datang ke sekolah Jawab a Andi naik kelas tetapi ia tidak dibelikan sepeda motor b x bilangan prima tetapi x habis dibagi 5 c Andi tinggal di Yogyakarta tetapi ia tidak kuliah di UGM atau Andi kuliah di UGM tetapi ia tidak tinggal di Yogyakarta d x bilangan ganjil tetapi x habis dibagi 2 atau x tidak habis dibagi 2 tetapi x bukan bilangan ganjil e Wati tidak makan pagi tetapi ia tidak terlambat datang ke sekolah atau Wati terlambat datang ke sekolah tetapi ia makan pagi 11. Jika p adalah pernyataan benar, dan q adalah pernyataan salah, maka tentukanlah nilai nilai kebenaran dari pernyataan majemuk berikut a –p Ʌ q → –p b p v q ↔ –p → q c –p v –q → –p Ʌ –q Jawab a –p Ʌ q → –p ≡ –B Ʌ S → –B ≡ S Ʌ S → S ≡ S → S ≡ B b p v q ↔ –p → q ≡ B v S ↔ –B → S ≡ B ↔ S → S ≡ B ↔ B ≡ B c –p v –q → –p Ʌ –q ≡ –B v –S → –B Ʌ –S ≡ S v B → –B Ʌ B ≡ B → –B ≡ B → S ≡ S 12. Nyatakanlah negasi dari setiap pernyataan majemuk berikut ini a Jika kerbau berkaki empat dan ayam berkaki dua maka Gajah Mada juga berkaki dua b Jika Arman bolos sekolah maka ia pergi ke pantai atau menonton bioskop c x kelipatan 6 jika dan hanya jika x bilangan genap dan x habis dibagi 3 d Ayah membawa cangkul atau parang jika dan hanya jika ia pergi ke kebun Jawab a Jika kerbau berkaki empat dan ayam berkaki dua maka Gajah Mada juga berkaki dua Misalkan a ≡ “kerbau berkaki empat” b ≡ “ayam berkaki dua” c ≡ “Gajah Mada berkaki dua” Menurut rumus p → q negasinya p Ʌ –q maka a Ʌ b → c negasinya a Ʌ b Ʌ –c sehingga negasi perrnyataan di atas menjadi kerbau berkaki empat dan ayam berkaki dua tetapi Gajah mada tidak berkaki dua b Jika Arman bolos sekolah maka ia pergi ke pantai atau menonton bioskop Misalkan a ≡ “Arman bolos sekolah” b ≡ “Arman pergi ke pantai” c ≡ “Arman menonton bioskop” Menurut rumus p → q negasinya p Ʌ –q maka a → b V c negasinya a Ʌ –b Ʌ –c sehingga negasi perrnyataan di atas menjadi Arman bolos sekolah tetapi ia tidak pergi ke pantai dan tidak menonton bioskop c x kelipatan 6 jika dan hanya jika x bilangan genap dan x habis dibagi 3 Misalkan a ≡ “x kelipatan 6” b ≡ “x bilangan genap” c ≡ “x habis dibagi 3” Menurut rumus p ↔ q negasinya p Ʌ –q V q Ʌ –p maka a ↔ b Ʌ c negasinya a Ʌ –[b Ʌ c] V [b Ʌ c] Ʌ –a a Ʌ –b V –c V b Ʌ c Ʌ –a sehingga negasi perrnyataan di atas menjadi x kelipatan 6 tetapi x bilangan ganjil atau x tidak habis dibagi 3 atau x bilangan genap dan x habis dibagi 3 tetapi x bukan kelipatan 6 TENTUKANNEGASI DARI KALIMAT MAJEMUK BERIKUT ! 1.2+4>3dan 3 bukan bilangan ganjil 2.20=0atau 23=8 3. Jika ketiga sudut segitiga besarnya sama maka segitiga tersebut sama sisi 4. Vero tidak memakai jaket jika dan hanya jika udara panas SELAMAT MENGERJAKAN •PERTEMUAN BERIKUTNYA KALIAN AKAN MEMPELAJARI KONVERS, INVERS DAN KONTRAPOSISI. – Negasi adalah salah satu logika matematika. Dilansir dari Departement of Mathematics University of Toronto, negasi adalah penyangkalan atau kebalikan dari suatu pernyataan. Untuk lebih mengetahui tentang negasi, berikut adalah contoh soal negasi beserta pembahasannya!Contoh soal 1 Negasi dari “Semua siswa menganggap matematika sulit” adalah … Jawaban Negasi adalah ingkaran atau kebalikan dari suatu pernyataan. Sehingga, negasi pertanyaan di atas adalah Tidak semua siswa menganggap matematika sulit. Beberapa siswa menganggap matematika tidak sulit. Baca juga Negasi, Konjungsi, Disjungsi, Implikasi, dan Biimplikasi Contoh soal 2 Negasi dari pernyataan “Gaji pegawai negeri naik dan semua harga barang naik” adalah … Jawaban Dilansir dari Mathematics LibreTexts, negasi mengubah nilai kebenaran suatu proposisi atau pernyataan. Jika suatu pernyataan bernilai benar, maka negasinya akan bernilai salah. Pernyataan di atas adalah proposisi majemuk dalam bentuk konjungsi ∧ karena menggunakan kata “dan”. Kalimat tersebut memiliki bentuk p p∧q~p ~p∧~q WPobZ6.
  • 5byfjheak9.pages.dev/60
  • 5byfjheak9.pages.dev/178
  • 5byfjheak9.pages.dev/513
  • 5byfjheak9.pages.dev/64
  • 5byfjheak9.pages.dev/284
  • 5byfjheak9.pages.dev/363
  • 5byfjheak9.pages.dev/373
  • 5byfjheak9.pages.dev/310
  • tentukan negasi dari pernyataan majemuk berikut